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ALGORITHM FOR THE INVERSE OF
A HERMITIAN TOEPILTZ MATRIX

INTRODUCTION

The efficient inversion of a given matrix and the related problem of solving a system of linear
equations has been a subject of intense study for many years. The literature on this subject is so vast
that no survey can be exhaustive. For example, a tentative classification and bibliography on solving
systems of linear equations written by Forsythe [1] contains over 400 titles. An excellent handbook on
the various numerical methods of mattix inversion and the solution of linear equations has been writ-
ten by Westlake [2). Different methods are compared based on such measures of effectiveness as
speed, storage requirements, and convergence rates if applicable.

Numerical methods for matrix inversion and the related problem of solving a system of linear
equations can be divided into two classes: the direct methods and the indirect (iterative) methods.
Direct methods such as Cramer's rule [3], Gaussian elimination [3], and orthogonalization [3-4] yield
an exact solution after a finite number of operations if there is no roundoff error. Iterative methods on
the other hand such as gradient methods [4), the back and forth Seidel [4], and successive overrelation
{5], begin with an approximate solution and obtain an improved solution with each step of the iteration.
The accuracy of the solution depends on the number of iterations performed.

For most direct methods of matrix inversion, the number of arithmetic operations is proportional
to M* where M is the row or column dimension of the given square matrix. For iterative methods, the
number of operations per iteration is proportional to M2, In general, the speed of an algorithm if there
is no parallel processing is proportional to the number of arithmetic operations so that this measure can
be used to evaluate the performance of a given algorithm.

A direct procedure for finding the solution of simultaneous linear equations where the multiplying
matrix is Toepiliz was developed by Levinson and presented in Norbert Weiner’s book, Extrapolation,
Interpolation, and Smoothing of Stationary Time Series [6]. This algorithm takes advantage of the Toepiltz
form to reduce the number of arithmetic operations to be proportional to M2 This algorithm has been
used by Burg [7] to estimate line spectra in a methodology commonly called maximum entropy spec-
trum analysis (MESA).

This report presents a new direct method for finding the inverse of an M X M hermitian Toepiltz
matrix. An M x M hermitian Toepiltz matrix, H, has the form

ho hl. hz. e hh.l—l
hy  hg Y e hye
hy hy  hy - hy_s
H= m
hy-y hp-2 hy-3 -0 ho
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where h is always real and * indicates the complex conjugate. Note that it is only necessary to specify
the elements of the first column of a hermitian Toepiltz matrix in order to define the entire matrix.
Therefore, we introduce the shortened notation: if H is an M x M hermitian Toepiitz matrix, then we
write

H= ((ho. hl' hz. e s hM_|)) (2)

where i, k = 0,1, ..., M — | are the elements of the first column of H.

We will take advantage of the form of a hermitian Toepiltz matrix and develop new direct
niethods for the solution of simultaneous linear equations and the matrix inverse. The basis of these
related algorithms lies in discrete Fouries series theory. Efficient algorithmic procedures are presented
which use the theory of the preceding sections to find the matrix inverse and the solution of simultane-
ous linear equations respectively. We then discuss the software implementation of the matrix inversion
algorithm.

SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

In this section, we will develop an algorithm for solving for the unknowns of a system of M
independent linear equations. Using this algorithm, we will see in the next section that an algorithm
for obtaining the inverse of a given hermitian Toepiltz matrix can be derived.

Consider the vector equation

Hx = ¢ (3)

where H is an M x M nonsinguiar hermitian Toepiltz matrix, ¢ is an M X 1 known vector, and X is an
M x | unknown vector. We desire to find x. We use the following approach. Let us define a system
of N = 2M — 1 independent linear equations as

|
|

...... T | B (4)
|

where Xy is an M x 1 unknown vector, Ty, = ¢, Xy is an (M — 1) x 1 unknown vector, 0 is a zero
filled (M — 1) x 1 vector, and

|
P | P
...... O S ((7% THAY WYY VIR IVEPRUUIY 1) (5)
P | P
4 Pu.

We call a matrix defined by the form seen in Eq. (5) as an up-down hermitian Toepiltz matrix
(UDHTM) because the subscripts of 4, seen in Eq. (5) increase and then decrease. We also assume
that Py, is nonsingular. The matrix, Py, as seen in Eqs. (4) and (5) is partitioned as follows: P{}’ is a
M x M matrix, P/ is an M x (M — 1) matrix, P{#’ is an (M — 1) x M matrix, and P}’ is an
(M — 1) x (M = 1) matrix. In addition, we can also show that P{M’ = H and thus is hermitian Toe-
piltz and that P}’ is also hermitian Toepiltz. In fact

P = ((hg, hy, by ... By ). 6)

.
j
g'.
i
;
:
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Note that the system of equations defined by Eq. (4) contains (2M — 1) unknowns and has a unique
solution if P{M’ is nonsingular. Also note from Eq. (4) that if P{M' = H and ¢y, = ¢, then X\, = x.
Thus, if we solve for the unknowns in Eq. (4), we have also solved for x in Eq. (3).

Let us rewrite Eq. (4) as

Wof e e || e
of 7| 2 T 0 |l "
where
o e |
R T ®

such that QM is an M x M matrix, Q{¥’ is an M x (M — 1) matrix, Q; is an (M — 1) x M

matrix, and @} isan (M — 1) x (M — 1) matrix. We show in Appendix A that

l * -

QM='A7FNA‘F,N 9
where F, is the Nth order discrete Fourier series (DFS) matrix defined by Eq. (A6), and A is a diago-
nal matrix whose element, A,,, consists of the Nth order DFS of the sequence {hg, hy, ..., hy_y,
hy-1v Bag_3, ..., ) (the Nth order DFS is defined by Eq. A4). In fact, if

lSo. L I TN SN—I’ = DFS {ho. hl- SN hM-l- hll.d-l' cens hl.} 10)
where {so. ;. .... Sy_;) is the sequence that results by finding the DFS of the sequence {h, A, ...,

Bpg-1s Bgg—1s ... o hy), then
Akk = sk_|', k = l, 2, cee s N. (ll)

It is also shown in Appendix A that if Py, is a UDHTM then Py;' or Qy, is also a UDHTM. Thus we
see that Oy, can be written

Ov= (80, 81, - 8u-1r 8M=1r -+ » ). 12)

Hence, it is seen that Q{*’ and Q{1 are hermitian Toepiltz matrices with
Q(M) - ((80. 8ls s gu...|)) (13a)

and
Qi = ((go. 210 -+ Bu-D). (13b)

Now, let us rewrite Eq. (7) in the equivnlem form as

O} Ty + QI Xn- (14a)
o- O &y + O %y (14b)
3

A W e




K. GERLACH
Equation (14b) can be rewritten as
P{MY Xy = T (14c)
where we have defined
P{M=1D = QM) Ty = — QM Ty (1s)

If we had a solution for X,,_; in Eq. (14a), we could find X),. To find X)_,, we use Eq. (14c). How-
ever, P{M~Y isa (M — 1) x (M — 1) hermitian Toepiltz matrix and ©y,_, is a derivable (M — 1) x 1
vector. Thus, we have reduced the order of the problem from finding an unknown M x 1 vector, Xy,
to finding an unknown (M — 1) x 1 vector, Xy, whose multiplying matrix is also hermitian Toepiltz.
Hence, the above procedure is reiterative and must be repeated M — 1 times with the assumption that

P{¥ k=2, ..., Mare nonsingular. On the M — 1 iteration, the equations have the form

=06+ 07 x (16a)
— N r
% = Qz(‘,, : (16b)
02

Note that x, and Q43 are now scalars. Thus, no matrix inversion of Q43 is necessary (it is assumed
032 #0). Therefore, X, is known and X, (a 2 x 1 unknown vector) can be found by using Eq. (16a).
In general, the unknowns, X,, k = 2, 3, ..., M can be obtained by using the forward reiterative for-
mula

}lr = |(|k) Ek + Q](f’ }k.,]. (]7)

The constant k x | vector, ¢, kK = 2, 3. ..., M can be obtained by using the backward reiterative for-
mula

Goa=—0F . k=MM-1,...,2 (18)
with the final condition that ¢,y = ¢. In the discussion of software algorithm for matrix inversion. we
discuss how to obtain the matrix, Q,, k=M. M —~ 1, ..., 2.

TOEPILTZ MATRIX INVERSION ALGORITHM

We can use the algorithm for finding the unknowns of a system of linear equations discussed in
the preceding section to obtain the inverse of a given hermitian Toepiltz matrix. Let us define the
k x k matrix, €2 ,, such that

QPP k=23 ... M 19
and
1
nl- 02(22) (20)

Note from Egs. (3), (4), and (19) that 2, = H~'. Now for k = M, Eq. (14c) implies that

EM- ﬂMEM. (2])

Equations (21) and (15) imply that

X1 Dpoi Oyt = = Qa1 O Oy = = Qg Q1 QI (22)
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Therefore, if we substitute Eqs. (21) and (22) into Eq. (17), we obtain ‘
Que=0M -0 Oy 01T (23) i
= (QiM - W, oiMye !

Because ¢ is an arbitrary M x 1 vector, Eq. (23) implies the following formula:
Qy=0M -0 Q0. (24a)

. Similarly, we can find a formula for @, = [P{¥~V]"' . We do this by choosing a new arbitrary
vector, ¢, of length M—1, and initiate solving a system of M—1 simultaneous equations as we did in
the preceding section. Using equations similar to Egs. (21) to (23), we would derive an equation
exactly like Eq. (24a) except that the index is M—1. Hence it is possible to write a reiterative formula

Q(k) Q(k) Qk IQ(kD (24b)

with k = 2, 3, » M, and with Q, given by Eq. (20). Thus if we reiterate Eq. (24b) M — 1 times,
we obtain H-! = QM

SOFTWARE ALGORITHM FOR MATRIX INVERSION

In this section, we present an efficient procedure for obtaining the inverse of a hermitian Toepiltz
by using the methodology described in the preceding sections. To begin with, it is seen from Eqgs. (20)
and (24b) that all that is necessary for computing the €, matrices, k = 1, 2, ..., M are the Q,
matrices. The partitions, Q{F, Q{4’, 03F', and Q;5' can be obtained easily from Q,. Now (; is a
UDHTM, so that all that is necessary to completely specify it is the first column of the matrix (actually
because of the up-down properly, just the first M elements of the first column are needed). The matrix
Q: can be found by using the formula

Q= g Fiet Al Faci k=23, ... M (25)

f where F,,_, is the (2k — 1) order DFS matrix defined by Eq. (A6) and A, is a diagonal matrix. The

% " diagonal element, A %), I = 1,2, ..., 2k — 1 is found as follows. If
. Ocer = ((g(k+1) g*D, L gD gk g tkanty) (26)
; and
(569, s{®, ..., s{2,) = DFS [gl*D), g+, | g#D glvs  ok+n) Qn
then k
AR =&y = 1,2,..., 2k-1. (28)

Now in order to generate all Q,, A, must be known. However, the matrix, A, can be obtained
by using the elements that define / and Eqgs. (10) and (11).

To evaluate Q,, seen in Eq. (25), it is not necessary to perform ail of the matrix operations indi-
P cated by this equation. In fact, it is straight forward to show (see Appendix A) that

(26, g™ ... g%)" g%}, ..., g®) =

T B SR T R S i o et oty e
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K. GERLACH

Thus, based upon the preceding discussion, we present the following algorithmic procedure for
finding H~":

A. Setk=M—-1,gMVap |=01,..,M-1.

Calculate {s{*’, s{¥, ..., s{&) ) by using Eq. (27).

Calculate {g{*, g*, ..., &%} by using Egs. (28) and (29).

Store (g%, g, ..., &!)).
k=k-1.

GotoBifk > 1.

G. Setfl, = —{27 (note g2 = Q) and k = 2.
&o

’ H.  Set Gy = (g, g, ..., & &% ..., ).
I.  Construct partitions: @, 0%, Q.

L oo=0ff -0 a0

K. k=k+1

L. GotoHifk < M

M. H'=aq,,. :

The algorithm can be divided into two parts: the first part (steps A-F) consists of finding the elements
of Qx, k= 12,3, ..., M, and the second part (steps G-M) calculates through a reiterative formula (step
J) the @, matrices.

It can be shown that gi¥’ and 5'*’, 1= 0, 1, ..., 2k — 2 are always real. Because of computa-
b tional errors, however, these values may have a small imaginary part. It was found that the accuracy of

b the matrix inverse, H~!, improved if only the real part of the computed g¢*' or 5%’ was used in
succeeding steps of the algorithm.

A Fortran computer program listing that implements the matrix inversion algorithm is given in
Appendix B.

SOFTWARE ALGORITHM FOR SOLUTION OF SIMULTANEOUS EQUATIONS

Similar to the preceding section, we present an algorithmic procedure for finding the solution of a
system of simultaneous linear equations as given by Eq. (3) as follows:

‘ i
A. Setk=M gM"V = p: [=0,1,2,... . M~ 1,¢y=FC
- B. Calculate {s{*’, s{¥, ..., si¥,] by using Eq. (27). ‘ f
iy
C. Calculate {gé*, g{*, ..., 2¢*)} by using Eqgs. (28) and (29). ~ _1
"
g
| 6
1! +
|
D ~ ,:‘-: A ‘ * 5 i J’f

: 3 S P
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D. Store (g5, g¥, ..., &)

E. Construct partition Q{f’ by using (g6, £/*, ..., g%}
F. G.;=—03F %, store &,_,.

G. k=k-—1.

H. GotoBifk > 1.

I.  Setx, = ¢,/g? (note x,, T, are scalars) and k = 2.
. Set Q= ((gd¥, g, ..., g%, &4 ... g0,
K. Construct partitions: Q{f’, 0.

L. X%=0P &+ Qi Xy

M. k=k+1.

N. GotolJifk < M.

O. I‘ - ;M-
IMPLEMENTATION OF THE MATRIX INVERSION ALGORITHM

The value of any algorithm that is used as a cutiig uter library subroutine is determined by such
measures as speed, the amount of computer memory needed, and the amount of hardware necessary to
implement the algorithm. The last two measures can sometimes be traded-off to obtain faster speeds.

For the matrix inversion algorithm, the amount of memory (doubie words for a complex number)
needed is at most M2, To see this. we observe from steps A-F that it is necessary to store
M (M — 1)/2 complex numbers. For steps G-M, it is necessary to store at most M2 complex
numbers. This results because it can be shown that if 2, = (%) k= 1,2,.... M, then

Q,‘,,’:,’= Q((Ifl;H»lNk-n#‘l); mn=1,2 ...,k (30)

Therefore. only half of the elements of the 2, matrix need 1o be stored. Since k < M. this number is
ai most M2/2. Hence, it follows that the maximum memory needed for steps A-M is M2, Storage
requirements for most matrix inversion algorithms are of the order, M? [2]. Thus there is no advan-
tage in eliminating memory by using the matrix inversion algorithm presented in this report.

A good indication of the speed of an algorithm is the number of multiplications (Xs) that are
necessary to perform the algorithm. Multiplications and divisions that are impiemented digitally are
generally much slower operations than the addition, subtraction, loading, and storing operations and
hence may account for the greater portion of the processing time. For steps A-F of the matrix inver-
sion algorithm, the approximate number of Xs is 2M?/3 and for steps G-M the approximate number of
Xs is M*/4. Hence, the total number of Xs is of the order of M*. For most direct methods of matrix
inversion the number of Xs is of the order of M> [2]. Thus it is seen that the algorithm presented in
this report is comparatively slow at least when implemented in pure software.

There are two other disadvantages associated with this matrix inversion algorithm. First, if the
given hermitian Toepiltz matrix # is singular, the algorithm does not indicate this. Second, if H is
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nonsingular, the intermediate UDHTMs employed in the algorithm may be singular. In this case, the
algorithm fails. It is possible to determine if an intermediate UDHTM is singular by noting whether
any of the values of Ay, /=1, 2, ..., 2k — 1, calculated in Eq. (28) are zero. If any of these values
are zero, then the given UDHTM is singular and the algorithm fails.

SUMMARY AND CONCLUSIONS

A new method for obtaining the inverse of a hermitian Toepiltz matrix was presented. In addi-
tion, a related technique for finding the solution of the system of linear equations, Hx = ¢, where H is
a hermitian Toepiltz matrix, was developed. Efficient algorithmic procedures for both of these methods
were listed.
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Appendix A
INVERSE OF AN UP-DOWN HERMITIAN TOEPILTZ MATRIX

In this appendix, we derive the inverse of a nonsingular up-down hermitian Toepiitz matrix
(UDHTM). Let Abea N x N UDHTM such that

A= ((ao, ay, dy, ..., Qpoy. a;,_l, a;,’_z, ce a,’)) (Al)

where gy isrealand N = 2M — 1.

The methodology of finding A~! is embedded in discrete-Fourier-series (DFS) analysis. The DFS
periodic convolution theorem [Al] states that if x(k), y(k) and z(k), k= ... =2,-1,0, 1,2, ...,
are periodic sequences with a period equal to N and

z(n) =Y x(n)y(n — m), (A2)
m=0
then
Z(k)= X(k)Y (k) (A3)

where X(k), Y(k), and Z (k) are the Nth order DFSs of x{(n), v{(n), and z(n) respectively. Recall
that a DFS is defined by the mapping of a sequence, «(n), of length N into a sequence. U{k), through
the transformation

A1
Uk)= Y uln) W, k=0,1,2 ... N-1 (A4)
n=0

where W\ = exp |—2mj/N) , j = v—1. The sequence, u(n). can be found from the inverse transfor-
mation
1 M-l
um = 4 ¥ UK WA n=0.1, 2 ... N= L. (AS)
=0
Let us define Fy to be an N x N matrix such that
Fy= )y Son= Wm D Dimp =12 ..., N (A6)

The matrix Fy will be called the Nth order DFS matrix because we can rewrite Eq. (A4) in matrix nota-
tion as

U= Fyi (A7)
where U= (U0, U(1), ..., UN= )T, = (u(0), u(1), ..., u(N = 1))7, and T denotes tran-
spose. The DFS matrix has the property that

— l -

This property can be shown by rewriting the inverse DFS transformation, Eq. (AS), in matrix notation
and comparing this to Eq. (A7).
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X Let us define a periodic sequence y(n), n=0,1,2, ..., N ~ 1 such that
1 a, n=0,l,...,M—l (9
~ v = a=MM+1, ..., N—L A9)
! 1t can be shown that Y(k), k =0, 1, .... N — 1 are real.
We can now rewrite Eq. (A2) in matrix notation and show that Z = A4Xx or equivalently
x=A"13 (A10)

where 4 is an N x N UDHTM defined by Eq. (A1), 2= (z(0), ..., z(N - 1))7, and x = (x(0), ...,
x(N — 1))7. We can also write Eq. (A3) in matrix notation as

Z=AX (A11)
| where A is a diagonal matrix with real diagonal elements Ay, = Y(k — D, k=1,... /N, Z = (Z1(0),
1 oy Z(IN=1))T, and X = (X(0), ..., X(N — 1))7. However, we know that Z = F\Zand X = Fy\X,

so that Eq. (Al1) can be rewritten as
Fvz=AFx (A12)

If we solve for X in Eq. (A12) and use Eq. (A8), we find that

—_— 1 . - -
x=—N-F,~A TFpz. (A13)

Subtracting Eq. (A13) from Eq. (A10), we see that

0= iNF,;/\“FN— A7z (Al4)

Since z can be chosen arbitrarily, this implies that

AV = — FyA"'Fy. (A15)

~7

1
N

G =

We summarize our result by the following theorem:

Theorem: If A is an N x N UDHTM, then 4 can be written in the form

A-%F,,‘AFN ¢

where Fy is the Nth order DSF matrix and A is an N x N diagonal matrix with real elements. In addi-
tion, if A is nonsingular, then 4~! has the form

*

- 1 e, |

, A'-WFNA'FN. |
i

We now prove the following theorem: ;:

4

Theorem: If A is a nonsingular UDHTM, then 4! is a UDHTM.

10
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Proof’

‘i Let us derive an individual element of the matrix 4~ by using Eq. (A15). By direct calculation,
it can be shown that if 4" = (a,,) mn=1,2 ..., N, then

=~ Z Aidy WRrTmk (A16)

We show that 4! is hermitian by using the fact that Ay k=1,...Nis real and Wwy'= Wy.
Thus

‘N— ( )k.
X ym A+lwm"

= — 2 AAH [W(m n)kl
k=0

— ( -
_ = Z AI.+| n—mjk
k=0

A

Also, it is readily shown from Eq. (A16) that the diagonal elements (m=n) are real.

We use the form of Eq. (A16) to show that 4 ' is Toepiltz. We see that it is possible to write
w,,, in the forma,,, = B,, , for all m and a, which is exactly the form of a Toepiltz matrix.

We show that 4 ' has the up-down property by demonstrating that for the elements in the first

row that
(AL17)

.
Xy = A(N=n+2)-

We do this as follows:

i l wU\ n+l)]

zl-—

* —
A\ (N-n+D) =

I _ 1 Nil [W(N n+l)k,
. = N k+|
N &
- 1 R IA | Wi
k=0
= Ay

Hence, the theorem is proved.
We see from Eq. (A16) that in order to find the elements of the first row of 4~', we can write

-4 z NP, WOk, (A18)
k=0

! However, we notice that the form of Eq. (A18) is that of a DFS (see Eq. (A4)) except for a scalar fac-
tor of 1/N. Hence, to generate the first row of 4~', we merely find the Nth order DFS of the sequence
Avh Azl Lo AR and divide all elements of the DFS by N. Therefore, since the first row of a hermi-
tian Toepiltz matrix specifies the entire matrix, we have found a simple method of generating the

3

e s O v Ttk b

yin

0 SRR, T S efqT e HATIL " SPe: My,



K. GERLACH ;

NEEIE g - 5

inverse of 4~'. Firstly, we generate A 1. A2, -...An by calculating the Nth order DFS of the sequence
ag. Q). ....ay_1.ap-), -...a;. Secondly, the first row of 47! is found by calculating the Mth order DFS
of the sequence A;', A7', ..., A5! and then dividing all elements of the DFS by N. Finally, because
g A~ is a hermitian Toepiltz matrix, all other elements of the matrix are specified by elements of the
. first row.
1
REFERENCES
Al. A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1975.
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Appendix B
PROGRAM LISTING OF THE MATRIX INVERSION ALGORITHM

SUBPOUTINE TOEPLZ{H,34EGAh,4,N)
AEEERRER KRR R R AR KRR KR KRR KRR K E D KRR KR LK KK KKK KKK

215 SUBROUTINF riND3 Ta¥ iwVEASI OF A savVoo s JISINGULATE
HEPMITIAN TOSPILTZ BATFIX wauoki

E=TnT HEFalTIZAN TCTEILIL NATISIX
(NCTZE THL DIAGCUAL TLLKINTS 4UsST Ja Xdda)

OMIGA=TInT MATRLX INVESISE UF u

TdT ALGOPZITHBE aly FAIL ZP Aw Zooloralblala Jacawa JaAT IS
JEZD IN CALCULARIZING THE ZAMVLA3Z Il SluuadaAce o0 Tils
OCUZRS THE MESSLGY M"ALGOTIZuM rAalloY 15 Zasdasde
WA N R K K K XK N ok vk K K o ok 3k o Ak K K K K K K JROK K K A e X6 RKOROK XK XK KK R K K KR R K X K K K
ITA2L ICIT COul LiX*8 (3—=d,9, v—u)
CINENSION Al i) ,TiN,d) gt {ByN) ;22 (ag1) gdusshA "),
1 VEQ PR RPIVR b RO\ PR ) RPRVE IR F DIRY RPIVPA IS DT K OV RPIY RS PR I
1 THITA (M,N)
LATA PI/3.1415929/,253007/avuiuuly
4dITZALIZE MAIFZX CONSIANIS
INITIALILE T NMATPIK
DO 200 K=1,M
T(KN)=HK,1)
3uy CONTINUE
MN1=M+1
DO 4uv k=21 ,N
T{K,%)=CONJG (i (N¢2-K,1))
400 CONTINUE
$1=n-1
FINLC SUCCESSIVE DFS
DO 5uu mMM=1,M1
MU=M+T=iiMY
NN=2,%*¥%M4-1
COMPUTZ DFS AATRIX OF O%D3IR NN
Al==2,%pI/NK
DO o0V K=1,N¥
DO 700 L=1,NN
AC=COS{(k=1) *[L=-1) *A1)
AS=SIN((K—1)*(L—1)*A1)
F(K,L) =CMPLX[{AC,AS)
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1 Tuu CuNIINGLE
oUU CONTINUZ
J0 3UUV k=1, 8N
300U TE (K, 1) =T (4,4Y)
g C  FIND DFS OF TP
\ D5 3200 &=1, NN
F{k,1) =CHFLX(V.,V.)
; DO 33uy L=1,NH
! .:.:;uu FURV)=F (K, ) #D (K, 2) *7 k00, %)
sevv CCNTINUE
22 3ul K=1, NN
I PR, STERALINIK,Y))
: 9‘611)=1-/(t5'3lK04))
JUU CCNTINUE
) OC 340v =1, NM
1D (K,T)=CEPLA (e (0.)
S0 3500 =1,
50U TT(R,N) =180, +F (K, L) *1(s, )
A=ALS (TEAL(TE(R,")))
IF{ALTLAFEZEDE) TYPIL tuu
100 FIFaAT ("4, 7 LoCRITHY FAILSY)
JF(RJLT AERICE) RETUR Y
JeuU COHTINUE
IP{Y,1)=>FA
2 I(*,0H8)=1
DS Yuu a=g, RN
TP, =CCauS{TP K, 1))
T(R,EM) =TT (K,T)
JJu CONTINUE
q%1=r58-1
DO 100C K=1,%01
D(K,5EY)=T2{a,")
Tudu CONTIMNUE
Lax1=2.%04 1-1
DD 1100 K=.4M, NN
T(K,iM?)=CONJG (TP (NNT+2=h, 1))
190u CCNTINUE ]
500 CINIINUE -
C COMDUTE LNVEESE MATRIX
JUEGA (1 ,1)=1./T(1,2)
L0 120u NMNF=2,2
NN=2.%44-1
C FIND 0 MATEFIX
¢(1,Y)=T(7,LH)
DO 13u0 K=2,NN
130y Q{1 LK) =COMIG T [K, 4h))
EC 1400 K=2 ,NN
"Lyl v IK,1)=CCNIGIRQIT1,K))
Lo 1509 =2 NN
LC 1600 I=2,NN
¢ (2 0d)=Q(1I=,d=1)
TeJdu CONTINUE
“Suu CCNTINUE
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NRL REPORT 8539

C FIND Q1%,u'%2,p27

2700
3600

390V
38uV

4100
LVIVEY)

14 1=u8-1

MMPI=hN+T

DO 3600 K=1,4M

DO 37069 1=1,Hn
w11(K,L)=Q (K,L)
CONTINUE

DO 3BLU K=1,r4

DO 3200 L=1,MM1
w12(K,L)=C(K,¥4¢1)
CONTINUE

DO 4000 K=1,4%1
D0 410v 1=7,4M
wel(K,L) =0 (MM+K,L)
CONTINUZ

C COMPUTE INVELKSE

qugv
L3vu
4299

L7uv
(Y VEY)
450v

4399
4300
120y

DO 4200 I=1,%H1
DO 43UV J=° ,HM
REG (I,J) =CHPLX (Je,Vs)
DO 4400 K=1,MM1
2HC(I,Jd)=FHC(I,J) *CEIGA{I, A) *.21 (K, J)
CANTINUE
CONTINUE
DD 4SuU I=1,MM
DO 4660 J=1,4¥
THETZR (I ,J)=CHPLX {0.,0.)
LO 470U K=1,849
THETA (1,Jd) =THTTA (I, Jd)+u12(I,K) *FiC(n,ui
CCNTINUT
CONTINUZ
DO 480U I=1,MM
DO 4300 J=7,M¥
OMEBGA (I,J)=u11(I,J)~-THETA (I,4)
CONTINUT
CCNTINUE
RETURN
END
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